

Published on Web 04/09/2004

Synthesis and Structure of 2,5,8-Triazido-*s*-Heptazine: An Energetic and Luminescent Precursor to Nitrogen-Rich Carbon Nitrides

Dale R. Miller, Dale C. Swenson, and Edward G. Gillan*

Department of Chemistry and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242

Received February 25, 2004; E-mail: edward-gillan@uiowa.edu

Aromatic nitrogen heterocycles have a wide variety of uses in coordination chemistry and optical science. As one example, the 1,3,5-triazine ring motif (*s*-triazine, C_3N_3) has shown extensive utility in synthetic chemistry,¹ coordination chemistry,² and optical and magnetic studies.³ Over the past few years, *s*-triazine has played a key role in molecular routes to carbon nitride (CN_x) materials investigated by various groups,⁴ including ours.⁵ Several of our triazine ring precursors contrast with those of others in that they are energetically unstable and rapidly decompose to CN_x materials.

In an effort to incorporate larger C-N fragments in a precursor structure, several groups have begun to examine the larger, related 1,3,4,6,7,9,9b-heptaazaphenalene ring system (tri-s-triazine or sheptazine, C_6N_7 , see Scheme 1). The *s*-heptazine structure was first postulated as a component of the polymer melon, $[-C_6N_7(NH_2)-$ NH-]_n, by Pauling and Sturdivant over 75 years ago.^{6a} The posthumous discovery of an azidoheptazine structure, [C6N7-(OH)₂N₃], on Pauling's chalkboard verifies his continued interest in s-heptazines.^{6b} Contemporary synthetic work on s-heptazinederived materials includes: (i) the isolation and structure of melem, $[C_6N_7(NH_2)_3]$, which decomposes and graphitizes above 560 °C,⁷ (ii) the pyrolysis of tricarbodiimide-s-heptazine, $[C_6N_7(NCNH)_3]$, at 550 °C to form a C₃N₃H extended network material,⁸ (iii) the pyrolysis of a mixture of C₆N₇(NCNH)₃ and C₆N₇Cl₃ (1) at 600 $^{\circ}C$ to form an oligomeric $C_{91}N_{124}H_{14}$ product, 9 and (iv) the crystal structure and optical properties of C₆N₇Cl₃ (1).¹⁰ An extensive theoretical study on the structure, stability, and optical properties of 10 heptazine molecules, including the title compound, was recently reported.¹¹ These studies show that, like their s-triazine counterparts, s-heptazine-based precursors are promising, thermally robust candidates as precursors to nitrogen-rich, sp²-bonded carbon nitride materials.

This Communication describes the synthesis and crystal structure of 2,5,8-triazido-*s*-heptazine (2). This polycyclic, completely conjugated molecule is comprised of only carbon and nitrogen and is energetically unstable due to its high azide content. The molecule 2 exhibits visible light photoluminescence and rapidly decomposes at 185 °C to nitrogen-rich CN_x materials.

Scheme 1. Synthesis of 2,5,8-Triazido-s-heptazine (2)^a

^{*a*} Reaction and conditions: (a) (1) 300 °C, air, (2) 400 °C, N₂; (b) (1) 2.5 M KOH_(aq), reflux, 4 h, (2) PCl₅, 130 °C, N₂, 10 h; (c) neat (CH₃)₃SiN₃, 100 °C, N₂, 12 h.

Figure 1. Crystal structure representation of **2.** Thermal ellipsoids drawn at 35% probability and bond lengths (Å) are noted.

The synthesis of **2** was accomplished via a melon intermediate produced by the pyrolysis of NH₄SCN.^{8,12} Melon was converted to the potassium salt of 2,5,8-trihydroxy-*s*-heptazine, [C₆N₇(OK)₃], which was then treated with PCl₅ to generate 2,5,8-trichloro-*s*heptazine (**1**, Scheme 1).¹⁰ After purification by Soxhlet extraction in benzene, **1** was heated at 100 °C in neat trimethylsilyl azide under N₂ for 12 h, yielding a quantitative conversion to 2,5,8triazido-*s*-heptazine (**2**). Soxhlet extraction in dry acetone was used to obtain the purified orange-tan product.

An FT-IR comparison of **1** with **2** clearly shows the appearance of the azide vibrations centered at 2168 cm⁻¹ and several peak shifts and intensity changes in the 600–1000 cm⁻¹ region (see Supporting Information). Mass spectrometry data on **2** show the parent ion peak at 296 amu and minor peaks consistent with successive N₂ loss. The solution ¹³C NMR spectrum of **2** shows resonances at 158.7 ppm (Scheme 1, carbon **A**) and 171.4 ppm (Scheme 1, carbon **B**) that agree very well with those of other *s*-heptazines.^{7,10,13}

Single-crystal X-ray diffraction analysis of crystals grown from dry acetone resulted in the structure of **2** represented in Figure 1. The molecule is planar with bent azide groups giving rise to C_{3h} symmetry. The bond distances around the heptazine periphery are very similar, indicating significant π bond delocalization. The central nitrogen (N1) lies in the plane of the heptazine ring and has sp²-like character, so its lone pair has some π overlap with neighboring carbons. There are angular distortions along the outer ring, such that the C2–N3–C4 angle is 116.6° while the N3– C4–N5 angle is 128.8°. These results closely agree with data on other *s*-heptazines^{7,10,13} and with theoretical predictions on **2**.¹¹

The azide groups show π bond localization with a short N7– N8 bond distance (bond order ≈ 2.5) and a longer N6–N7 bond distance (bond order ≈ 1.5). The C4–N6–N7 angle is 111.9°, and

Figure 2. UV-visible (red curve, left) and photoluminescence (blue curve, right) spectra for 2.

the N6–N7–N8 angle is slightly bent at 172.6°. The azides lie in the plane of a flat *s*-heptazine core. These results agree very well with structural data from other conjugated nitrogen heterocycles with azides¹⁴ and with theoretical structure calculations on **2**.¹¹

The molecules of **2** pack into an AB layer-like structure. The azides and heptazines are offset from one layer to another leading to a C_3 symmetric channel at the origin running down the *c* axis (see Supporting Information). The molecules in adjacent layers are separated by roughly twice the nitrogen van der Waals distance (3.08 Å), consistent with near molecule contacts.

The UV-visible absorption spectrum for **2** in ethanol is shown in Figure 2. The peaks at 275 and 295 nm are likely due to $\pi - \pi^*$ and $n - \pi^*$ transitions. Two very weak absorptions are also observed at 360 and 385 nm and may contribute to the orange-tan appearance of **2**. Theoretical studies predict a HOMO-LUMO gap of 4.14 eV (300 nm) for **2**,¹¹ consistent with the UV-visible data. Under 290 nm excitation, **2** shows a broad photoluminescence peak in ethanol at 430 nm. This emission is in the range of luminescence observed for other *s*-heptazines^{10,13} and π -conjugated nitrogen-containing polycyclic systems.¹⁵ Note that extended illumination of **2** below 270 nm results in slow degradation, likely via photolytic azide decomposition.

The thermal stability of 2 was examined by thermogravimetricdifferential thermal analysis (TG-DTA). Under argon flow and a 2 °C/min ramp rate, TG-DTA revealed a rapid weight loss at ~185 °C accompanied by a sharp exothermic event (see Supporting Information). The decomposition product was a tan-colored, visibly porous solid with thermal stability up to ~500 °C. An isothermal 150 °C TG-DTA experiment shows that 2 is relatively stable for 3 h (<5 wt % loss), then over the next 5 h it steadily loses 23 wt %, achieving a constant weight equivalent to the loss of 3 N₂ per molecule. The material at this point no longer rapidly decomposes upon heating at higher temperatures. The large-scale rapid decomposition of 2 was initiated with a heated filament in a closed stainless steel reactor under argon as previously described.^{5c} The product obtained by this method has a bulk elemental formula near C₃N₄ and an FT-IR spectrum typical for sp²-bonded CN_x materials.4,5 Further characterization of this carbon nitride product is ongoing.

Molecular azides are often thermodynamically unstable, shock and impact sensitive, and should be handled with caution. For example, triazido-*s*-triazine has explosive properties,¹⁶ violently detonates during vigorous grinding in a polished agate mortar, and produces pure carbon nanoflakes^{5a} or carbon nanotubes¹⁷ when it explodes. In contrast, the larger polycyclic triazide **2** can be safely ground in a polished agate mortar, but visibly and moderately decomposes when ground in an unpolished ceramic mortar, leaving behind a tan-brown residue. It also has an impact sensitivity near 6 N·m, which is similar to that of lead azide, an established primary explosive 16

In summary, we report the synthesis and crystal structure of 2,5,8triazido-*s*-heptazine (**2**), a rare example of a fully conjugated, polycyclic all carbon and nitrogen molecular compound. This planar heptazine is photoluminescent near 430 nm and shows potential as an energetic single-source precursor for the rapid synthesis of nitrogen-rich C_3N_4 network materials. The large number of nitrogen lone pairs present in **2** also makes it an attractive candidate as a component in supramolecular metal coordination frameworks.

Acknowledgment. We thank the Research Corporation (Research Innovation Award) and the University of Iowa for funding this research.

Supporting Information Available: Experimental procedures for preparation and characterization of **2**. FT-IR spectrum, TG-DTA plot, crystallographic data, and packing structures for **2**. Table comparing data on **2** and related *s*-heptazines (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Quirke, J. M. E. 1,3,5-Triazines. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Boulton, A. J., McKillop, A., Eds.; Pergamon: Elmsford, NY, 1984; Vol. 3, Part 2B, pp 457–530.
- (2) (a) Zhang, W.; Nowlan, D. T., III; Thomson, L. M.; Lackowski, W. M.; Simanek, E. E. J. Am. Chem. Soc. 2001, 123, 8914–8922. (b) Mascaros-Galan, J.-R.; Clemente-Juan, J.-M.; Dunbar, K. R. J. Chem. Soc., Dalton Trans. 2002, 2710–2713. (c) Polson, M. I. J.; Taylor, N. J.; Hanan, G. S. Chem. Commun. 2002, 1356–1357.
- (3) (a) Lupton, J. M.; Hemingway, L. R.; Samuel, I. D. W.; Burn, P. L. J. Mater. Chem. 2000, 10, 867–871. (b) Kannan, R.; Guang, S. H.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.; Tan, L.-S. Chem. Mater. 2004, 16, 185–194. (c) del Sesto, R. E.; Arif, A. M.; Novoa, J. J.; Anusiewicz, I.; Skurski, P.; Simons, J.; Dunn, B. C.; Eyring, E. M.; Miller, J. S. J. Org. Chem. 2003, 68, 3367–3379.
- (4) (a) Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Chem. Mater. 2000, 12, 3264–3270. (b) Komatsu, T. J. Mater. Chem. 2001, 11, 799– 801. (c) Lv, Q.; Cao, C.; Li, C.; Zhang, J.; Zhu, H.; Kong, X.; Duan, X. J. Mater. Chem. 2003, 13, 1241–1243. (d) McMurran, J.; Kouvetakis, J.; Nesting, D. C.; Hubbard, J. L. Chem. Mater. 1998, 10, 590–593. (e) Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. J. Mater. Chem. 2000, 35, 2547–2552. (f) Zhang, Z.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. J. Am. Chem. Soc. 2001, 123, 7788–7796. (g) Guo, Q.; Xie, Y.; Wang, X.; Zhang, S.; Hou, T.; Lv, S. Chem. Commun. 2004, 1, 26–27. (h) Vodak, D. T.; Kim, K.; Iordanidis, L.; Rasmussen, P. G.; Matzger, A. J.; Yaghi, O. M. Chem. Eur. J. 2003, 9, 4197–4201.
- (5) (a) Gillan, E. G. Chem. Mater. 2000, 12, 3906–3912. (b) Wang, J.; Miller, D. R.; Gillan, E. G. Carbon 2003, 41, 2031–2037. (c) Miller, D. R.; Wang, J.; Gillan, E. G. J. Mater. Chem. 2002, 12, 2463–2469 and references therein.
- (6) (a) Pauling, L.; Sturdivant, J. H. Proc. Natl. Acad. Sci. U.S.A. 1937, 23, 615–620. (b) Chem. Eng. News 2000, Aug. 7, p 62.
- (7) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. J. Am. Chem. Soc. 2003, 125, 10288–10300.
- (8) Komatsu, T.; Nakamura, T. J. Mater. Chem. 2001, 11, 474-478.
- (9) Komatsu, T. J. Mater. Chem. 2001, 11, 802-805.
- (10) Kroke, E.; Schwartz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. *New J. Chem.* **2002**, *26*, 508–512.
- (11) Zheng, W.; Wong, N.; Wang, W.; Zhou, G.; Tian, A. J. Phys. Chem. A 2004, 108, 97–106.
- (12) Leibig, J. Ann. Pharm. 1834, 10, 1-48.
- (13) Hosmane, R. S.; Rossman, M. A.; Leonard, N. J. J. Am. Chem. Soc. 1982, 104, 5497-5499.
- (14) (a) Hughes, E. W. J. Chem. Phys. **1935**, 3, 1–5. (b) Kessenich, E.; Klapöke, T. M.; Nöth, H.; Schulz, A. Eur. J. Inorg. Chem. **1998**, 2013– 2016. (c) Kessenich, E.; Polborn, K.; Schulz, A. Inorg. Chem. **2001**, 40, 1102–1109. (d) Allen, D. W.; Buckland, D. J.; Nowell, I. W. J. Chem. Soc., Perkins Trans. 2 **1976**, 1610–1611.
- (15) Draper, S. M.; Gregg, D. J.; Madathil, R. J. Am. Chem. Soc. 2002, 124, 3486-3487.
- (16) Meyer, R. Explosives, 3rd ed.; VCH Publishers: New York, 1987.
- (17) Kroke, E.; Schwarz, M.; Buschmann, V.; Miehe, G.; Fuess, H.; Riedel, R. Adv. Mater. 1999, 11, 158–161.

JA048939Y